LCD-мониторы. Как устроен LCD модуль монитора? Что внутри? Принцип действия жк мониторов

Сейчас технологии плоскопанельных и жидкокристаллических мониторов являются наиболее перспективными. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 году. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 года, корпорация RCA продемонстрировала прототип LCD - цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975-го уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Конструкция ЖК-дисплея

Рисунок 1. Конструкция ЖК-дисплея.

Плоскость поляризации

Основываясь на этом открытии и в результате дальнейших исследований стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD для настольных компьютеров.

Рисунок 2. Плоскость поляризации.

Экран LCD представляет собой массив маленьких сегментов, называемых пикселями, которыми можно манипулировать для отображения информации. LCD имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Слои собственно и содержат тонкий слой жидких кристаллов между собой (см. рис. 1). На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.

Плоскость поляризации

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Как видно на рисунке 2, плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы (см. рис. 3).

Рисунок 3. Плоскость поляризации.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем (см. рис. 4а).

Конструкция ЖК-матрицы

Рисунок 4. Поляризация светового луча.

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) (см. рис. 4б). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут принимать любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.

Первые LCD были очень маленькими, около 8 дюймов по диагонали, в то время как сегодня они достигли 15-дюймовых размеров для использования в ноутбуках, а для настольных компьютеров производятся LCD с диагональю 20-дюймов и более. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Технологии STN, DSTN, TFT, S-TFT

STN - сокращение от Super Twisted Nematic. Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки -- их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало (см. рис. 5), поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

Рисунок 5. Конструкция ЖК-матрицы.

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN - два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (то есть при угле обзора 120–140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° (см рис. 6), и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.

Угол обзора ЖК-мониторов

Рисунок 6. Угол обзора ЖК-мониторов.

Функциональные возможности LCD-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчном обновлении дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1) и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые Thin Film Transistor (или просто TFT).
Thin Film Transistor (TFT), то есть тонкопленочный транзистор, это те управляющие элементы, при помощи которых контролируется каждый пиксель на экране. Тонкопленочный транзистор действительно очень тонкий, его толщина 0,1–0,01 мкм.
В первых TFT-дисплеях, появившихся в 1972 году, использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si), а в матрицах с высоким разрешением используется поликристаллический кремний (p-Si).
Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в режиме SVGA и только с тремя цветами имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD-панели. Правда, у каждого производителя свое мнение о том, какое количество транзисторов могут не работать.
Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов (см. рис. 7). Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15,1-дюймового дисплея TFT (1024x768) приблизительно равен 0,0188 дюйма (или 0,3 мм), а для 18,1-дюймового дисплея TFT - около 0,011 дюйма (или 0,28 мм).

Рисунок 7. Конструкция TFT.

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых - пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

Рисунок 8. Конструкция S-TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана (см. рис. 8). Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, В результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Японская компания NEC недавно объявила, что по качеству изображения ее LCD дисплеи вскоре достигнут уровня лазерных принтеров, перешагнув порог в 200 ppi, что соответствует 31 точке на квадратный мм, или шагу точек 0,18 мм. Как сообщили в NEC, применяемые сегодня многими производителями жидкие кристаллы TN (twisted nematic) позволяет строить дисплеи с разрешение до 400 точек на дюйм. Однако главным сдерживающим фактором в повышении разрешения является необходимость создания соответствующих светофильтров. В новой технологии «color filter on TFT» светофильтры, закрывающие тонкопленочные транзисторы, формируются с помощью фотолитографии на нижней стеклянной подложке. В обычных дисплеях светофильтры наносятся на вторую, верхнюю подложку, что требует очень точного совмещения двух пластин.

На прошедшей в 1999 году в США конференции «Society for information Display» было сделано несколько докладов, свидетельствующих об успехах в создании жидкокристаллических дисплеев на пластиковой подложке. Компания Samsung представила прототип монохромного дисплея на полимерном субстрате с диагональю 5,9 дюйма и толщиной 0,5 мм. Толщина самой подложки составляет около 0,12 мм. Дисплей имеет разрешение 480х320 точек и контрастность 4:1. Вес - всего 10 грамм.

Инженеры из Лаборатории кинотехники Университете Штуттгарта использовали не тонкопленочные транзисторы (TFT), а диоды MIM (металл-изолятор-металл). Последнее достижение этой команды - двухдюймовый цветной дисплей с разрешением 96х128 точек и коэффициентом контрастности 10:1.

Группа специалистов IBM разработала технологию производства тонкопленочных транзисторов с применением органических материалов, позволяющую изготавливать гибкие экраны для электронной книги и других устройств. Элементы разработанных IBM транзисторов напыляются на пластиковую подложку при комнатной температуре (традиционные LCD-дисплеи изготавливаются при высокой температуре, что исключает применение органических материалов). Вместо обычного диоксида кремния для изготовления затвора используется цирконат титоната бария (BZT). В качестве полупроводника применяется органическое вещество под названием пентацен (pentacene), представляющее собой соединение фенилэтиламмония с иодидом олова.

LCD дисплей – это самый распространенный вид экранов телевизоров и мониторов, а также дисплеев телефонов и других устройств. Такое распространение данный вид экрана получил благодаря целому ряду неоспоримых преимуществ.

Для того чтобы понять все положительные качества ЖК дисплеев следует понять, что это такое, а также знать принцип работы и устройства таких экранов. Именно об этом и пойдет речь в данной статье.

1. Расшифровка LCD

ЖК-дисплей означает – жидкокристаллический экран, если перевести на английский язык - Liquid crystal display. Из этого следует, что ЖК и LCD – это одно и тоже. Данная технология получила такое название благодаря применению уникального вещества, которое всегда находится в жидком состоянии и обладает оптическими свойствами, присущими кристаллам.

Современный ЖК экран отличается рядом преимуществ, которые обеспечиваются именно жидкими кристаллами. Постоянное жидкое состояние молекул жидких кристаллов позволяет управлять их оптическими свойствами, воздействуя на них электричеством. При этом молекулы меняют свое расположение, преломляя проходящий свет под нужным углом, отсеивая определенный спектр излучения.

2. Устройство ЖК дисплея

Практически все существующие сегодня ЖК дисплеи имеют идентичное устройство. Если говорить о конструкции, то любой LCD монитор или телевизор состоит из следующих компонентов:

  • ЖК матрицы;
  • Источник света;
  • Контактного жгута;
  • Обрамление (корпус).

ЖК матрица представляет собой две стеклянные пластины, между которыми располагается тонкий слой жидких кристаллов. По сути – это массив, состоящий из огромного множества ячеек, называемых пикселями. Каждый пиксель матрицы состоит из нескольких молекул жидких кристаллов и двух поляризационных фильтров. Причем плоскости этих фильтров расположены перпендикулярно относительно друг друга.

Каждый пиксель матрицы расположен между двумя специальными прозрачными электродами, что дает возможность управлять расположением молекул в каждом пикселе отдельно. LCD технология может основываться на прохождении либо отражении света, в зависимости от устройства монитора, через молекулы жидких кристаллов. Разницы между этими типами матриц практически нет. Однако стоит отметить, что большинство ЖК дисплеев работают на прохождение света через слой жидких кристаллов.

3. Принцип работы ЖК дисплея

Принцип работы LCD дисплея заключается в том, что при условии отсутствия молекул жидких кристаллов свет пропускается первым поляризационным фильтром и полностью блокируется – вторым.

Сами жидкие кристаллы расположены между этими фильтрами таким образом, чтобы преломлять свет, проходящий через первый фильтр так, чтобы он беспрепятственно проходил через второй. Так устроены TN матрицы. Жидкокристаллические дисплеи с другими типами матриц могут действовать наоборот, однако принцип работы при этом не меняется. То есть в спокойном состоянии излучение блокируется и не проходит через матрицу, а при возбуждении электромагнитного поля плоскость излучения меняется так, чтобы свет проходил без препятствий

Для того чтобы молекулы жидких кристаллов располагались в нужном порядке без воздействия электричеством, на контактирующую поверхность электродов нанесены специальные микроскопические бороздки, выстраивающие молекулы в нужном порядке. Таким образом, если воздействовать на определенные области матрицы получается изображение.

Каждый современный жидкокристаллический экран имеет высокое разрешение. Это означает, что матрица состоит из огромного количества пикселей, при этом управлять ими можно каждым в отдельности. Другими словами, если увеличить какую-либо область экрана можно заметить мелкие ячейки, меняя напряжение каждой из этих ячеек можно изменить угол преломления света именно в данной точке. Путем создания необходимого напряжения в каждой из ячеек и создается определенное изображение.

4. Тип подсветки ЖК матрицы

Современные LCD дисплеи могут использовать два варианта подсветки:

  • Люминесцентные лампы;
  • Светодиодная подсветка.

Конечно же, тип подсветки существенно влияет на качество изображения. Люминесцентные лампы считаются устаревшим методом подсветки. Главной проблемой данного типа подсветки является невозможность равномерного распределения света по всей плоскости экрана, что не позволяет достичь высокого качества изображения. Он использовался в первых ЖК матрицах и сегодня встречается все реже.

Светодиодная подсветка, более известная под название LED, является последней разработкой, которая позволила достичь более высокого качества изображения. Такой тип подсветки отличается рядом преимуществ.

Во-первых – это низкое потребление электроэнергии. Во-вторых, LED подсветка излучает более интенсивный свет, который позволяет более равномерно распределить излучение. Благодаря компактным размерам такая подсветка не занимает много места, что позволяет делать экраны еще более тонкими.

5. Типы ЖК матриц

В мире существует несколько типов LCD матриц, однако на отечественном рынке встречается только два вида:

  • TN+Film;

Оба варианта имеют достаточно высокие характеристики. Если говорить о том, какой вариант лучше выбрать, то следует отметить, что все больше производителей отдают предпочтение IPS матрицам, так как они позволяют передать более естественные цвета.

Конечно, как и в любой другой технологии, здесь также есть свои плюсы и минусы. IPS матрицы отличаются отличным качеством изображения, высокой четкостью и прекрасной цветопередачей. Однако при этом имеют медленный отклик. Современные технологии позволили улучшить этот показатель до высокого уровня.

TN+Film матрицы уступают по качеству и четкости изображения. Однако при этом они имеют быстрый отклик, который позволяет таким мониторам отображать самые яркие спецэффекты и быстрые видео записи. Однако стоит понимать, что все эти измерения проводятся при помощи специальной техники. В домашних условиях вы вряд ли сможете заметить существенную разницу между этими матрицами. Поэтому выбор остается за вами.

6. Устройство TFT дисплея: Видео

Конечно, зная все эти нюансы, люди, которые занимаются обработкой фотографий, предпочитают IPS матрицы, так как им не требуется быстрый отклик, но при этом необходима максимально естественная цветопередача. В других случаях, тип матрицы не играет роли.

Ну и, конечно же, все характеристики зависят и от производителя, а также от используемой технологии и материалов. Не стоит думать, что все IPS матрицы одинаковы, они также могут отличаться между собой. Стоит понимать, что чем дороже монитор (или телевизор) тем более высокое качество изображения вы сможете получить. То же самое можно сказать и о TN+Film матрицах.

Какой бы жидкокристаллический дисплей вы не выбрали, стоит обязательно ознакомиться с его возможностями и техническими характеристиками. На сегодняшний день ЖК-дисплеи являются самыми распространенными по ряду причин. Их преимущества вы уже знаете. Благодаря этому они являются прямыми конкурентами плазменным панелям, но при этом они имеют более низкую стоимость, что делает их более доступными для пользователей. Кроме того, они имеют больший ресурс. Другими словами, ЖК-дисплей служит существенно дольше плазменной панели.

Жидко кристаллический монитор (также Жидкокристаллический дисплей, ЖКД, ЖК-монитор, англ. liquid crystal display, LCD, плоский индикатор) - плоский монитор на основе жидких кристаллов. ЖК мониторы были разработаны 1963г.

LCD TFT (англ. TFT - thin film transistor - тонкопленочный транзистор) - одно из названий жидкокристаллического дисплея, в котором используется активная матрица , управляемая тонкопленочными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и четкости изображения дисплея.

Устройство ЖК-монитора

Изображение формируется с помощью отдельных элементов, как правило, через систему развертки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью RGB -триад. В большинстве настольных мониторов на основе TN -(и некоторых *VA ) матриц, и во всех дисплеях ноутбуков используются матрицы с 18-битным цветом(6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN -матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растет число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отраженным от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, "родное", физическое разрешение, остальные достигаются интерполяцией.

Размер точки : расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.

Соотношение сторон экрана(формат) : Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.

Видимая диагональ : размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

Контрастность : отношение яркостей самой светлой и самой темной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности(так называемая динамическая) не относится к статическому изображению.

Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.

Угол обзора : угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями считается по-разному, и часто сравнению не подлежит.

Тип матрицы : технология, по которой изготовлен ЖК-дисплей

Входы : (напр, DVI , D-SUB, HDMI и пр.).

Технологии


Основные технологии при изготовлении ЖК дисплеев: TN+ film , IPS и MVA . Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках. Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display) - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V , высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+ film (Twisted Nematic + film )

Макрофотография TN+ film матрицы монитора NEC LCD1770NX . На белом фоне - стандартный курсор Windows.


Часть " film " в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку " film " часто опускают, называя такие матрицы просто TN . К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причем время отклика у данного типа матриц является на существующий момент одно из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

IPS (In-Plane Switching)

Технология In- Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film . Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора "битый" пиксель для панели IPS будет не белым, как для матрицы TN , а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.AS-IPS - технология Advanced Super IPS (Расширенная Супер- IPS ), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS , приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например NEC LCD20WGX2 ) созданных по технологии S-IPS , разработанной консорциумом LG.Philips .

A-TW-IPS - Advanced True White IPS (Расширенная IPS с Настоящим Белым), разработано LG.Philips для корпорации NEC . Представляет собой S-IPS панель с цветовым фильтром TW (True White - Настоящий белый) для придания белому цвету большей реалистичности и расширению цветового диапазона. Этот тип панелей используется при создании профессиональных мониторов для использования в фотолабораториях и/или издательствах.

AFFS - Advanced Fringe Field Switching (неофициальное название S-IPS Pro ). Технология является дальнейшим улучшением IPS , разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться еще больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays .

Принцип действия ЭЛТ-монитора

Монитор на основе электронно-лучевой трубки (CRT (Cathode Ray Tube) – мониторы) буквально 5-7 лет назад был самыми распространенными. Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить "электронно-лучевая трубка" (ЭЛТ). Развитие этой технологии, применительно к созданию мониторов, за последние годы привело к производству все больших по размеру экранов с высоким качеством и при низкой стоимости.

На конец эпохи CRT-мониторов (2003-2007г.г.) наиболее распространенными являлись 17" мониторы, и наблюдалась явная тенденция в сторону 19" экранов.

Рассмотрим принципы работы CRT-мониторов. CRT- или ЭЛТ-монитор имеет стеклянную трубку, внутри которой вакуум, т.е. весь воздух удален.

Устройство ЭЛТ цветного изображения:

1 - Электронные пушки.

2 - Электронные лучи.

3 - Фокусирующая катушка.

4 - Отклоняющие катушки.

6 - Маска, благодаря которой красный луч попадает на красный люминофор, и т. д.

7 - Красные, зелёные и синие зёрна люминофора.

8 - Маска и зёрна люминофора (увеличенно).

С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (7). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами.

Для создания изображения в CRT-мониторе используется электронная пушка(1), которая испускает поток электронов(2) сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора(6), которая покрыта разноцветными люминофорными точками.

Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. В цветном CRT-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся и мало кому интересны.

Наши глаза реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов.


Принцип действия ЖК-монитора

LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров.

Сегодня они достигли 17" размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD-мониторы.

Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и распологаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости.

Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны.

В отсутствие напряжения кристаллы выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит практически без потерь.

Схематическое устройство красного субпиксела ЖК-монитора

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение.

При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности.

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам .

Принцип действия сенсорного монитора

Сенсорный экран (touch монитор) – это монитор, который чувствителен к прикосновениям, позволяющий людям работать с компьютером с помощью касаний к картинкам и словам.

Сенсорные мониторы (touch мониторы) обычно используются на информационных панелях, в компьютеризированной подготовке устройств и просто людей, которые лишены возможности пользоваться мышью и клавиатурой.

Сенсорные технологии также можно использовать и в других приложениях, где может потребоваться мышь, например Web-браузеры. Некоторые приложения разработаны специально для сенсорных технологий, в которых обычно используются наиболее большие изображения(иконки), нежели в обычных ПК-приложениях. Мониторы, поддерживающие функцию встраиваемых сенсоров, также могут оснащаться сенсорным управлением.

Существует три вида сенсорных технологий:

Резистивные: резистивные сенсорные панели покрыты металлической пластинкой проводящей электричество и резистивным слоем, вызывающим изменение в электрическом потоке который распознается как прикосновение и посылает его в диспетчер для обработки. Резистивные сенсорные панели обычно наиболее доступные, но выдают только 85% ясности, к тому же их можно повредить любым острым предметом. Попадание пыли или воды, не влияют на работу резистивных сенсорных панелей.

Поверхностно акустически волновые (ПАВ): ПАВ технологии используют ультразвуковые волны, проходящие через поверхность сенсорной панели. Когда к панели прикасаются, часть волн поглощается. Это изменение в ультразвуковых волнах фиксируется как прикосновение и посылает информацию в контроллер для обработки. ПАВ панели наиболее прогрессивны.

Емкостный: емкостные сенсорные панели покрыты материалом, содержащие электрический заряд. Когда к панели прикасаются, точка соприкосновения получает небольшой заряд. Цепь расположена по всем углам панели, измеряет заряд и посылает информацию в диспетчер для обработки. Емкостные сенсорные панели должны быть использованы прикосновением пальцев, в отличие от резистивных и ПАВ панелей, которые могут быть использованы пальцем или пером. Попадание пыли или воды, не влияют на работу емкостных сенсорных панелей.

Более подробную информацию о сенсорных экранах можно получить по адресу: http://digitaldevice.ua/project/tehnologii-sensornih-ekranov

Принцип действия 3D -монитора

На сегодняшний день уже несколько компаний налаживают 3D -монитора. Фирма Sharp представила жидкокристаллический 15-дюймовый 3D-монитор по цене в $1500, что в 5 раз превышает стоимость обычного, двухмерного, LCD-дисплея.

О сроках массового производства пока не сообщается, но тенденция обнадеживает. Немецкая компания ACT Kern продает свои трехмерные дисплеи уже около года.

Такой монитор будет незаменим для научных исследований, медицины, проектирования, да и рядовой пользователь не откажется сыграть в трёхмерную игрушку. Естественно, для новой технологии потребуется иное программное обеспечение, но при развитии рынка 3D за этим дело не встанет.

Технические характеристики мониторов:

Разрешение LCD-мониторов одно, и его еще называют native, оно соответствует максимальному физическому разрешению CRT-мониторов. Именно в native разрешении LCD-монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD-монитора фиксирован. Например, если LCD-монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай: пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение. Для этого есть два способа. Первый называется "Centering" (центрирование); суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка. Второй метод называется "Expansion" (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако, из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость. Поэтому при выборе LCD-монитора важно четко знать, какое именно разрешение вам нужно.

Разрешение экрана монитора:

Яркость и контрастность LCD-мониторов не стандартизованы. При этом в центре яркость LCD-монитора может быть на 25% выше, чем у краев экрана. Контрастность LCD-монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом, является одним из основных параметров дисплея.

По отношению к свету матрица ЖК-дисплея является не активным, а пассивным элементом, она не способна излучать свет, а лишь способна модулировать проходящий через нее. Поэтому позади ЖК-матрицы всегда размещается модуль подсветки, а матрица лишь управляет своей прозрачностью. Регулировка прозрачности осуществляется за счет поворота плоскости поляризации – жидкие кристаллы расположены между двумя сонаправленными поляризаторами: сонаправленность означает, что если свет между ними не изменил свою плоскость поляризации, то он проходит через второй поляризатор без потерь.

Сравнение LCD-мониторов и CRT-мониторов:

Параметры

LCD monitor

CRT monitor

Разрешение

Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны.

Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации.

Частота регенерации

Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания.

Только при частотах свыше 75 Гц отсутствует явно заметное мерцание.

Точность отображения цвета

Поддерживается True Color и имитируется требуемая цветовая температура.

Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом.

Формирование изображения

Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD-панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким.

Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате, четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества CRT.

Угол обзора

В настоящее время стандартным является угол обзора 150 o и выше; с дальнейшим развитием технологий следует ожидать увеличения угла обзора.

Отличный обзор под любым углом.

Энергопотребление и излучения

Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT-мониторов.

Всегда присутствует электромагнитное излучение, однако его уровень зависит от того, соответствует ли CRT d какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 80 Вт.

Интерфейс монитора

Цифровой интерфейс, однако большинство LCD-мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров.

Аналоговый интерфейс.

Сфера применения

Стандартный дисплей для мобильных систем. В последнее время начинает завоевывать место и в качестве монитора для настольных компьютеров. Идеально подходит в качестве дисплея для компьютеров, т.е. для работы в Интернет, с текстовыми процессорами и т.д.

Стандартный монитор для настольных компьютеров. Крайне редко используются в мобильном виде. Идеально подходит для отображения видео и анимации.

Преимущества и недостатки современных мониторов:

Технология

Недостатки

Преимущества

Морально устарела, мерцание, вес и габариты

Большие углы обзора, цветопередача, скорость реакции точки

Скорость реакции, цветопередача, углы обзора

Яркость, вес, габариты, дизайн, перспективы развития, большие диагонали

Вес, большие размеры точки, небольшой срок службы, высокая цена

Яркость, контрастность, время реакции точки

Неотработанность технологии, малые диагонали, высокая цена

Время отклика, яркость, углы

Высокая цена, технологическая сложность, углы обзора

Улучшенное восприятие изображения

Стандарты безопасности:

На всех современных мониторах можно встретить наклейки с аббревиатурой TCO или MPRII. На очень старых моделях встречаются еще и надписи "Low Radiation", которые на самом деле ни о чем не говорят. Просто когда-то, исключительно в маркетинговых целях, производители из Юго-Восточной Азии привлекали этим внимание к своей продукции. Никакой защиты подобная надпись не гарантирует.

Большинство измерений во время тестирований на соответствие стандартам TCO проводятся на расстоянии 30 см спереди от экрана и на расстоянии 50 см вокруг монитора. Для сравнения: во время тестирования мониторов на соответствие другому стандарту MPRII все измерения производятся на расстоянии 50 см спереди экрана и вокруг монитора. Это объясняет то, что стандарты TCO более жесткие, чем MPRII.

TCO’99 предъявляет более жесткие требования, чем все остальные стандарты, в следующих областях: эргономика (физическая, визуальная и удобство использования), энергия, излучение (электрических и магнитных полей), окружающая среда и экология, а также пожарная и электрическая безопасность. Стандарт TCO’99 распространяется на традиционные CRT-мониторы, плоскопанельные мониторы (Flat Panel Displays), портативные компьютеры (Laptop и Notebook), системные блоки и клавиатуры. Спецификации TCO’99 содержат в себе требования, взятые из стандартов TCO’95, ISO, IEC и EN, а также из EC Directive 90/270/EEC и Шведского национального стандарта MPR 1990:8 (MPRII) и из более ранних рекомендаций TCO. В разработке стандарта TCO’99 приняли участие TCO, Naturskyddsforeningen и and Statens Energimyndighet (The Swedish National Energy Administration, Шведское Национальное Агентство по Энергетике).

Экологические требования включают в себя ограничения на присутствие тяжелых металлов, броминатов и хлоринатов, фреонов (CFC) и хлорированных веществ внутри материалов.

Любой продукт должен быть подготовлен к переработке, а производитель обязан иметь разработанную политику по утилизации, которая должна исполняться в каждой стране, в которой действует компания.

Требования по энергосбережению включают в себя необходимость того, чтобы компьютер и/или монитор после определенного времени бездействия снижали уровень потребления энергии на одну или более ступеней. При этом период времени восстановления до рабочего режима потребления энергии, должен устраивать пользователя

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

Просмотров